Простейшую форму реализации можно получить из выражения, определяющего разностное уравнение для рекурсивного фильтра.
Из приведенной схемы видно, что для синтеза фильтра при M=N требуется 2N ячеек памяти и необходимо выполнить 2N умножений и 2N сложений. Причем, данная схема представлена таким образом, что каждый узел имеет не более двух входов. Несмотря на то, что эта условность приводит к большему числу узлов, чем необходимо, она согласуется с тем фактом, что при построении цифровых фильтров (как программным способом, так и в виде специализированных устройств) операция суммирования нескольких (больше двух) чисел осуществляется на основе формирования сумм отдельных пар чисел. В цифровой аппаратуре в отдельный момент времени, как правило, суммируются только два числа.
Характерными чертами этой структуры является ее простота и непосредственная связь с z-преобразованием. Однако ее недостатком является высокая чувствительность характеристик фильтра к погрешностям коэффициентов передаточной функции. По этой причине в большинстве практических случаев рассмотренную структуру стараются не применять.
Один из подходов к усовершенствованию структур цифровых фильтров состоит в сокращении числа элементов схем. Это приводит к так называемым каноническим формам.
Структуру цифрового фильтра принято называть канонической по отношению:
a)к элементам задержки, если их число равно порядку передаточной функции фильтра;
b)к коэффициентам передаточной функции, если число коэффициентов равно сумме степеней числителя и знаменателя передаточной функции с действительными коэффициентами (масштабирующие множители при этом не учитываются);
c)к умножителям, если их число равно числу коэффициентов передаточной функции и если реализация является канонической по отношению к ее коэффициентам.
Чаще всего канонической называют структуру, удовлетворяющую условию a).