Leave a comment

Comments 122

twincat December 17 2024, 07:18:23 UTC
десяток окрашенных в разные цвета меток, каждому выдается по девять, за вычетом его собственной
потом все бросают по одной из них в урну для голосования, вот и все

Reply

hardsign December 18 2024, 07:57:03 UTC
Золото!

Reply

twincat December 18 2024, 08:05:53 UTC
быстр, точен, лаконичен! ))

Reply


v_pychick December 17 2024, 07:30:16 UTC
предположим скульпторов и статуй 10
нумеруем статуи
делаем 9 * 10 шаров с номерами от 1 до 10
даем каждому скульптору 9 шаров с номерами всех скульптур кроме его собственной.
дальше пусть смотрят статуи и кладут в ящик шар с номером понравившейся.

Reply

hardsign December 18 2024, 07:57:09 UTC
Серебро!

Reply


telepuzpuz December 17 2024, 07:38:04 UTC
Вопрос на голосование: назвать самую плохую статую. Потом второй тур, до тех пор, пока не останется одна!

Reply

hardsign December 17 2024, 07:46:43 UTC
В принципе, могло бы сработать. Но слишком сложно. И результат не совсем тот, который надо: как ни странно, «лучшая» и «не входящая в число худших» - это зачастую разные экземпляры.

Reply

telepuzpuz December 17 2024, 09:37:01 UTC

Как раз это - самый объективный метод выбора лучшего. Поскольку из N голосов N-1 будут объективны, и лишь 1 - субъективен.

Reply


alll December 17 2024, 07:38:24 UTC

Три вида жетонов (по числу вариантов выбора), по два каждому голосующему в руки (кроме своего), один жетон в горшок для голосования, один в горшок для мусора.

Reply

hardsign December 18 2024, 07:57:17 UTC
Бронза!

Reply


bom_lj December 17 2024, 07:40:02 UTC

каждому голосующему раздают список участников, где его имени нет.

Reply

hardsign December 17 2024, 07:48:14 UTC
А потом я беру бюллетень, в котором не упоминается bom_lj, и мучительно думаю: а чей же это бюллетень? Голосование же должно быть тайным...

Reply

vladimir_akinin December 17 2024, 08:10:26 UTC

Так раздавать не бюллетни, а карточки с именами.

Условно - работают Вася, Петя, Дима и Миша.

Вася получает карточки "Петя", "Дима", "Миша", и должен опустить одну из них в урну.

Подозреваю, что в случае со скульпторами - можно было раздавать небольшие цветные камни.

Reply

hardsign December 18 2024, 07:57:53 UTC
Вот этот ответ - совсем не тот, что исходный. И он верный!

Reply


Leave a comment

Up