Этап физического пуска реактора БН-800 на быстрых нейтронах началсясегодня на Белоярской АЭС, сообщил РИА Новости представитель Росэнергоатома.
В ходе этого этапа, который может продлиться несколько недель, реактор будет заполнен жидким натрием и затем в него будет загружено ядерное топливо. Представитель Росэнергоатома пояснил, что по завершении физического пуска энергоблок будет признан ядерной установкой.
Энергоблок №4 с реактором БН-800 Белоярской атомной электростанции (БАЭС) выйдет на полную мощность к концу 2014 года, сообщил журналистам в среду первый замгендиректора госкорпорации «Росатом» Александр Локшин.
«На полную мощность блок должен выйти к концу года», - сказал он, уточнив, что речь идет о конце 2014 года.
По его словам, в настоящее время идет заполнение контура натрием, окончание физического пуска планируется к середине апреля. По его словам, энергоблок готов к физическому пуску на 99,8%. Как отметил гендиректор ОАО «Концерн Росэнергоатом» Евгений Романов, в конце лета намечен энергопуск объекта.
Энергоблок с реактором БН-800 является развитием уникального реактора БН-600 на Белоярской АЭС, который находится около 30 лет в опытно-промышленной эксплуатации. Технологиями реакторов на быстрых нейтронах в мире обладают очень небольшое количество стран, и Россия является мировым лидером в этом направлении.
Давайте узнаем о нем подробнее …
Реакторный (центральный) зал БН-600
В 40 км от Екатеринбурга, посреди красивейших уральских лесов расположен городок Заречный. В 1964 году здесь была запущена первая советская промышленная АЭС - Белоярская (с реактором АМБ-100 мощностью 100 МВт). Сейчас Белоярская АЭС осталась единственной в мире, где работает промышленный энергетический реактор на быстрых нейтронах - БН-600
Представьте себе кипятильник, который испаряет воду, а образовавшийся пар крутит турбогенератор, вырабатывающий электроэнергию. Примерно так в общих чертах и устроена атомная электростанция. Только «кипятильник» - это энергия атомного распада. Конструкции энергетических реакторов могут быть различными, но по принципу работы их можно разделить на две группы - реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.
В основе любого реактора лежит деление тяжелых ядер под действием нейтронов. Правда, есть и существенные отличия. В тепловых реакторах уран-235 делится под действием низкоэнергетических тепловых нейтронов, при этом образуются осколки деления и новые нейтроны, имеющие высокую энергию (так называемые быстрые нейтроны). Вероятность поглощения ядром урана-235 (с последующим делением) теплового нейтрона гораздо выше, чем быстрого, поэтому нейтроны нужно замедлить. Это делается с помощью замедлителей- веществ, при столкновениях с ядрами которых нейтроны теряют энергию.
Топливом для тепловых реакторов обычно служит уран невысокого обогащения, в качестве замедлителя используются графит, легкая или тяжелая вода, а теплоносителем является обычная вода. По одной из таких схем устроены большинство функционирующих АЭС.
Быстрые нейтроны, образующиеся в результате вынужденного деления ядер, можно использовать и без какого-либо замедления. Схема такова: быстрые нейтроны, образовавшиеся при делении ядер урана-235 или плутония-239, поглощаются ураном-238 с образованием (после двух бета-распадов) плутония-239. Причем на 100 разделившихся ядер урана-235 или плутония-239 образуется 120-140 ядер плутония-239. Правда, поскольку вероятность деления ядер быстрыми нейтронами меньше, чем тепловыми, топливо должно быть обогащенным в большей степени, чем для тепловых реакторов. Кроме того, отводить тепло с помощью воды здесь нельзя (вода- замедлитель), так что приходится использовать другие теплоносители: обычно это жидкие металлы и сплавы, от весьма экзотических вариантов типа ртути (такой теплоноситель был использован в первом американском экспериментальном реакторе Clementine) или свинцово-висмутовых сплавов (использовались в некоторых реакторах для подводных лодок- в частности, советских лодок проекта 705) до жидкого натрия (самый распространенный в промышленных энергетических реакторах вариант). Реакторы, работающие по такой схеме, называются реакторами на быстрых нейтронах. Идея такого реактора была предложена в 1942 году Энрико Ферми. Разумеется, самый горячий интерес проявили к этой схеме военные: быстрые реакторы в процессе работы вырабатывают не только энергию, но и плутоний для ядерного оружия. По этой причине реакторы на быстрых нейтронах называют также бридерами (от английского breeder- производитель).
Зигзаги истории
Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi - уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).
В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.
Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985-1997), Monju (Япония, 1994-1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.
Строительство БН-800
Они возвращаются
Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране - всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!
Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.
Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.
Гладко только на бумаге
Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии - от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).
«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, - объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. - Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, - оно лишь чуть выше атмосферного».
По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы - как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».
«Проблемы действительно были одни и те же, - добавляет директор Белоярской АЭС Николай Ошканов, - но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,- открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».
Быстрое будущее
«В мире не было бы такого интереса к технологии быстрых реакторов, если бы не успешная многолетняя эксплуатация нашего БН-600, - говорит Николай Ошканов.- Развитие атомной энергетики, на мой взгляд, в первую очередь связано с серийным производством и эксплуатацией именно быстрых реакторов. Только они позволяют вовлечь в топливный цикл весь природный уран и таким образом увеличить эффективность, а также в десятки раз уменьшить количество радиоактивных отходов. В этом случае будущее атомной энергетики будет действительно светлым».
Реактор на быстрых нейтронах БН-800 (вертикальный разрез)
Что у него внутри
Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями
370 топливных сборок образуют три зоны с различным обогащением по урану-235 - 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).
Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) - трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.
В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней - головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.
Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» - фотонейтронный источник (гамма-излучатель плюс бериллий).
Как устроен реактор БН-600
Реактор имеет интегральную компоновку, то есть в корпусе реактора расположена активная зона (1), а также три петли (2) первого контура охлаждения, каждая из которых имеет свой главный циркуляционный насос (3) и два промежуточных теплообменника (4). Теплоносителем служит жидкий натрий, который прокачивается через активную зону снизу вверх и разогревается с 370 до 550°С
Проходя через промежуточные теплообменники, он передает тепло натрию во втором контуре (5), который уже поступает в парогенераторы (6), где испаряет воду и перегревает пар до температуры 520°С (при давлении 130 атм). Пар подается на турбины поочередно в цилиндры высокого (7), среднего (8) и низкого (9) давления. Отработанный пар конденсируется за счет охлаждения водой (10) из пруда-охладителя и вновь поступает в парогенераторы. Три турбогенератора (11) Белоярской АЭС выдают 600 МВт электрической мощности. Газовая полость реактора заполнена аргоном под очень небольшим избыточным давлением (около 0,3 атм).
Перегрузка вслепую
В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотные пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены.
Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования - менее 0,01 градуса), усилий извлечения и постановки. На работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне.
В 1983 г. на базе БН-600 предприятием был разработан проект усовершенствованного реактора БН-800 для энергоблока мощностью 880 МВт(э). В 1984 г. были начаты работы по сооружению двух реакторов БН-800 на Белоярской и новой Южно-Уральской АЭС. Последующая задержка сооружения этих реакторов была использована для доработки проекта с целью дальнейшего повышения его безопасности и улучшения технико-экономических показателей. Работы по сооружению БН-800 были возобновлены в 2006 г. на Белоярской АЭС (4-й энергоблок) и должны быть завершены в 2014 г.
Перед строящимся реактором БН-800 поставлены следующие важные задачи:
Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности.
Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем:
испытания и аттестация перспективного топлива и конструкционных материалов;
демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.
Ведётся разработка проекта усовершенствованного коммерческого реактора БН-1200 мощностью 1220 МВт.
Реактор БН-1200 (вертикальный разрез)
Планируется следующая программа реализации этого проекта:
2010…2016 гг. - разработка техпроекта реакторной установки и выполнение программы НИОКР.
2020 г. - ввод в действие головного энергоблока на МОХ- топливе и организация его централизованного производства.
2023…2030 гг. - ввод в эксплуатацию серии энергоблоков суммарной мощностью около 11 ГВт.