ИТЭР: Радиочастотный нагрев плазмы, часть первая.

Feb 28, 2015 20:37


В одной из предыдущих статей я рассказывал про инжектор нейтрального луча - систему нагрева плазмы пучком нейтральных атомов, разогнанных до 1 МэВ. Эта система отвечает за 33 мегаватта греющей мощности ИТЭР из общей возможности в 73. Еще 40 мегаватт поровну разделено между двумя радиочастотными подсистемами, работающих соотвественно на частоте ионного циклотронного резонанса (ИЦР) и электронного циклотронного резонанса (ЕЦР). Называются они соотвественно ICRH и ECRH (radiofrequency heating). По принципу действия они весьма близки к микроволновке, только та работает на частоте резонансного поглощения вращательных мод молекул воды, а тут речь идет о резонансе с вращением ионов и электронов в магнитном поле токамака.



Для ИТЭР эти частоты (зависящие от величины магнитного поля) получаются 40-55 мегагерц для ICRH и 170 гигагерц для ECRH. Не смотря на разницу частот аж в 4 порядка системы эти довольно схожи - мощные радиоламповые генераторы, высоковольтные источники питания, внешне одинаковые линии передачи мощности и похожие антенны ввода излучения в плазму. Тем не менее есть интересные особенности в реализации.



Рис. 1. Расположение системы ICRH: голубое - генераторы, зеленое - линии передачи, синее - антенны.

Итак, система ICRH мощностью 20 мегаватт, из открыто известных систем будет рекордным источником радиочастотной мощности в своем диапазоне. Система модульная, набранная из 8 + 1 генерирующих модулей по 2.5 мегаватта (1 запасной). Каждый модуль размером примерно с 20 футовый контейнер. В одном таком модуле распологаются две цепочки генератора, согласующие элементы, комбайнер, складывающий радиочастотное излучение ну и оборудование в кубиклах - задающий генератор, управление, защиты, кое-какие вторичные источники питания.



Рис. 2. Модуль генератора.

Ключевым генерирующим элементом является радиолампа - диакрод TH628 производства Thales мощностью от 1.25 до 2 мегаватт в нагрузке в зависимости от КСВ (поскольку нагрузка более чем капризная, ожидается КСВ в диапазоне от 2,5 до 4 после 3(!) ступеней согласования).



Рис. 3. TH628

Для понимания, что за зверюга эта лампа - назову несколько параметров: ток накала 960 А при напряжении 30 вольт, анодное напряжение 30 киловольт, мощность в систему охлаждение 1.8 мегаватта.

Так, как это тетрод, и его усиление относительно невелико (14db), то предвыходной каскад - тоже довольно рекордная лампа мощностью до 125 киловатт, а всего цепочка усиления - это 3 ламповых и 4 транзисторных каскада. Интересно, что для управления согласованием каскадов используются резонансные полости, форма которых меняется электродвигателями, всего в каждой генерирующей цепочке таких электродвигателей 18, а время настройки генератора по согласованию - 3 минуты жужжания серводвигателями, что весьма необычно :)

Что еще более необычно - генераторы будут создаваться, испытываться и инсталлироваться на площадке ITER индийской стороной, хотя, подозреваю, что доля съевших на таких системах не одну собаку европейцев в индийской разработке будет весьма высока :)

Для питания радиогенераторов нужны специализированные высоковольтные источники питания. Кроме того, что они высоковольтные и мощные, они должны обладать двумя свойствами - уметь быстро изменять напряжение питания на лампах (амплитудная модуляция мощности поможет управлять плазмой) и уметь еще быстрее отключатся в случае КЗ в системе. Вообще последний пункт можно найти в любых мощных источниках питания в ИТЭР - стандартное требование - это отключение за 10 мкс и остаточное энерговыделение не больше 10 джоулей.



Рис. 4. Идея работы PSM

Наиболее совершенная используемая схема в таких случаях - pulse step modulation. В этом случае от единого трансформатора делается десяток-другой не очень высоковольтных отводов, на каждый из которых вешается AC/DC блок питания, напряжением 1 киловольт и полным током системы (например 100 ампер). В каждом таком блоке имеется ключ, которым можно замкнуть накоротко выводы. Эти блоки объединяются последовательно по напряжению, и соотвественно могут либо поднимать общее напряжение на 1 киловольт, либо в выключенном состоянии и с замкнутым выходом отключатся от системы. Этот прием позволяет очень быстро модулировать выходное напряжение. Выглядят такие блоки питания вот так:



рис 5. PSM источник Ampegon

Естественно, кроме основного 4 мегаваттного БП в системе нужно много относительно небольших источников питания для управляющих и экранных сеток ламп, накальные источники тока, питание для полупроводников и т.п.

После того, как мы превратили полезное электричество в бесполезные радиоволны, необходимо их собрать от генераторов, и передать на антенны, либо на эквиаленты нагрузки. Радиомощность передается по коаксиальным проводникам, диаметром 300 мм. Эти коаксиальные линии способны передавать до 6 мегаватт мощности, а изолирующей средой работает азот под давлением 3 атмосферы. При работе на мощности разность потенциалов будет достигать 40 киловольт, опять же рекордная величина для коаксиальных линий. Для такой линии приходится разрабатывать и соотвествующие элементы - разветвители, разъемы, выключатели и т.п. Всей темой линий передачи занимается ITER USA.



Рис. 6. Элементы "коаксиального кабеля"

После генерации и маршрутизации излучения важной задачей является согласование импеданса между коаксиальной линией и плазмой, при этом характеристики нагрузки сильно меняются как сами по себе так и в результате работы системы ICRH. Для непрерывного согласования используются коаксиальные трансформаторы со скользящими звеньями, которые непрерывно подстраивают импеданс под изменение ситуации.



Рис. 7. То, чего вы никогда не увидите в антенном кабеле своего ТВ.



Рис. 8. Антенна ICRH мощностью 10 мегаватт.

Согласующие трансформаторы, вакуумно-газовые переходы, сама антенна, защита ее от излучения и дугового разряда в результате выпрямления РЧ излучения плазмой, расчет электромагнитных сил от плазмы, работа всего этого хозяйства при температуре до 250 градусов - это тема многолетней исследовательской работы европейского агенства ITER.



Рис. 9. Исследовательский стенд французкого атомного агенства



Рис. 10. Инженерная модель антенны.

Очередной случай, когда “попил народных денег” позволяет создавать продукты, нужные для военных и гражданских, улучшать расчетные методики, лучше понимать пределы инженерии радиочастотных систем высокой мощности.



Рис. 11. Расчет взаимодействия РЧ-излучения с плазмой.

Во второй части этой статьи мы сравним “гудящую канализацию” низкочастотной ICRH с “лазерным мечом” 170 гигаггерцовой ECRH.

P.S. ITER IO выпустили коротенькое, но интересное на мой взгляд видео, с пролетом через инженерную модель будущего реактора.

image Click to view



icrh, ИТЭР, нагрев плазмы

Previous post Next post
Up